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THREE-DIMENSIONAL ELASTIC STRESS AND DISPLACEMENT ANALYSIS

OF FINITE GEOMETRY SOLIDS CONTAINING CRACKS*

by John P. Gyekenyesi and Alexander Mendelson

Lewis Research Center

SUMMARY

The line method of analysis is applied to the Navier-Cauchy -equations of

elastic equilibrium to calculate the displacement distributions in various

bodies containing cracks. The application of this method to these equations

leads to coupled sets of simultaneous ordinary differential equations whose

solutions are obtained along sets of lines in a discretized region., When de-

coupling the equations and their boundary conditionis is not possible, the use

of a successive approximation procedure permits the analytical solution of

the resulting ordinary differential equations. The results obtained show 4

considerable potential for using this method in the three-dimensional ana-

lysis of finite geometry solids and suggest a possible extension of this tech-

nique to nonlinear material behavior.

INTRODUCTION

Considerable progress has been made in recent years in the stress

analysis of bodies containing flaws or cracks, However, most of the work

on this subject has been based on the plane theory of elasticity (ref. 1).

For a fracture specimen of finite geometry the stress and displacement fields

are highly three-dimensionaL, Hence, solutions of the general elasticity

* Submitted to the International Journal of Fracture Mechanics,
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field equations must be obtained when more reliable results are needed.

Because of the geometric singularity associated with any crack type

problem, there is almost no possibilityof a simple closed form type of so-

lution, For this reason, three-dimensional elastic solutions have been

obtained only for a restricted class of problems (refs. 2 to 4). Recently,

with the availability of large digital computers, a variety of numerical

methods appeared in the literature; however, most of these methods have

yielded only partial results, Among these approxinate methods are the

finite difference (ref. 5), the finite element (ref. 6), the direct potential

(ref. .7), the eigenfunction expansion (ref. 8), and the line method of ana-

lysis (refs. 9 to 11), Of all these solutiort techniques,,Alhe Iline method,of

analysis appears to yield the most complete and accurate results for three-

dimensional elasticity problems.

Although the concept of the line method for solving partial differential

equations is not new (ref. 12), its application in the past has been limited to

simple examples (ref. 13), The line method lies midway between completely

analytical and discrete methods. The basis of this technique is the substi-

tution of finite differences for the derivatives with respect to all the inde-

pendent variables except one for which the derivatives are retained, This

approach replaces a given partial differential equation with a system of si-

multaneous ordinary differential equations whose solutions can then be ob-

tained in closed form. These equations describe the dependent variable

along lines which are parallel to the coordinate in whose direction the deriv-
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atives were retained, Application of the line method is most useful when

the resulting ordinary differential equations are linear and have constant

coefficients.

An inherent advantage of the line method over other numerical methods

is that good results are obtained from the use of relatively coarse grids.

This use of a coarse grid is permissible because parts of the solutions are

obtained in terms of continuous functions. Additional accuracy in normal

stress distributions is derived from the fact that they are expressed as first-

order derivatives of the displacements and these derivatives can be analyti-

cally evaluated. Inherently inaccurate numerical differentiation is required

only for evaluating the shear stresses, but this presents no important loss of

accuracy since they are an order of magnitude smaller than the normal

stresses. For problems with geometric singularities, additional accuracy

is derived from using a displacement formulation since the resulting defor-

mations are not singular.

It is the purpose of this report to present a simple and systematic

approach to the elastic analysis of three-dimensional, finite geometry solids

containing traction-free cracks. The need for these specific solutions has

existed for a number of years in fracture toughness testing. Problems that

are most conveniently described in rectangular Cartesian coordinates as

well as circular geometry solids are treated.
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IEDUCTIONIOF THE NAVIER-CAUCHY EQUATIONS TO SYSTEMS

OF ORDINARY DIFFERENTIAL EQUATIONS

Within the framework of lineaiized elasticity theory, the equations of

elas~tic equilibrium in ferins.of displacements are

(x + G) le + GV2u = 0 (1)
ax

(x: + G) + GV 2 v = 0 (2)
ay.

( + G)-ae + GV2w = 0 (3)
az

where the body forces are assumed to be zero and the dilatation is

av aw
e + + (4)

ax ay az

For a :finite geometry solid with rectangular boundaries, we construct

three sets of parallel lines (fig. 1(a)). Each set of lines is parallel to one

of the coordinate axes and thus perpendicular to the corresponding coor-

dinate plane. An approximate solution of equation (1) can then be obtained by

developing solutions of ordinary differential equations along the x-directional

lines. As seen in the figure, there are a total of f = NY x NZ such lines

where NY is the number of lines along the y-direction and NZ is the number

of lines along the z-dire:ction in a given plane, respectively. We define the

displacements along these lines as ul, u2 , . .. , u. The derivatives of the

y-diiectional.displacements on these lines with respect to y are defined as

v ?I v'1 . . , v'j , and the derivatives of the z-directional displacements
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with respect to z are defined as w'i w' 2' ,. These displace-

ments and derivatives can then be regarded as functions of x only since

they are variables on x-directional lines. When these definitions are used,

the ordinary differential equation along a generic line ij (a double subscript

is used here for simplicity of writing) in figure 1(b) may be written as

2

d uij ( - 2 v) 2(1 - v) 2
h22 21(-]) -2 (5 ) h

dy

and

Y -z dw

f .. (x)
+ 1(u ij1+ u. . } + = 0 (5)

h2 i2 +1 , - 2(1 -v)

dz

where

Similar differential equations are obtained along the other x-directional

lines. Since each equation has the terms of the displacements on the surf-

fi (x) Av i + -w (6)
dIx .. x ..j

V? dV=-
dy

and
,_dw

dz

Similar differential equations are obtained along the other x-directional

lines. Since each equation has the terms of the displacements on the sur57

rounding, lines, these equations constitute a system of ordinary differential

equations for the displacements ul, u2 ,. . , u .

The set of f second order differential equations represented by (5)

can be reduced to a set of 2 first order differential equations by treating
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the derivatives of the u's as an additional set of f unknowns, ie. defining

du 1 du
u 1= u 2 t. (7)

, + a' ' I = ec+2. dx .

The resulting , 2 equations can now be written as a single first order

matrix differential equation

dU AU 1 (x) (8)
mw= +-R (x)

where U and R are column matrices of 2f elements each and A1

is a 2Px2f matrix of the constant coefficients appearing in equations (5)

and (7).

In a similar manner, to solve equations (2) and (3) ordinary differen-

tial equations are constructed along the y- and z-directional lines respec-

tively. 'Ihele equations are also expressed in an analogous form to equa-

tions (8); they are

dV
= A2V + S(y) (9)

dW
A A3 W + T(z) (10)

Equations (8) to (10) are linear first-order ordinary matrix differehtial

equations. They are, however, not independent, but are coupled through

the vectors R, S and T whose components are given by equations similar

to (6). The elements of the coefficient matrices A1 , A2 and A3 are all

constants, being functions of the coordinate increments and Poisson's ratio

only.
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Noting that a second-order differential equation can satisfy only a total

of two boundary conditions and since three-dimensional elasticity problems .

have three boundary conditions at every point of the bounding surface, some

of the boundary data must be incorporated into the surface line differential

equations. Hence, conditions of normal stress and displacement are en-

forced through the constants of the homogeneous solutions while shear stress

boundIary data must be incorporated into the differential equations of the

surface lines. The application of the specified shear conditions permits the

use of central difference approximations when surface line differential eq-

uations are constructed. The details of constructing these equations are

found in reference 9.

EQUATIONS IN CYLINDRICAL COORDINATES

The Navier-Cauchy equations in cylindrical coordinates are written as
ae+(l2v)(V20r. i2u r2 vi =0

1e + (1 - 2v) - = 0 ()

r 2 2 o

1 . (1 - 2V) 2 v + 2 au =0(1
r a8 2 a8

r r

+ (1 - 2v)V 2 w = 0

az

where the body forces are assumed to be zero and the dilatatio-is

au I av aw
e= u v v + (12)

ar r a8 r az

For a finite geometry body with circular boundaries, we construct
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three sets of parallel lines in the direction of the coordinates as shown in

figure 2. Approximate solutions of equations (11) can then be obtained by

developing solutions of ordinary differential equations along the radial,

circumferential, and axial lines, respectively. For the first of equations

(11), we define the displacements along the radial lines as ul, u 2 , . . ., uf.

The derivatives of the circumferential displacements on these lines with re-

spect to e are defined as v' 1, v' 2' . ' v' , and the derivatives of the

axial displacements with respect to z are defined as w' 1, w' 2'

w' . These displacements and derivatives can then be regarded as functions

of the radius only, since they are variables on radial lines. If these def-

initions are used, the ordinary differential equation along ageneric, radial

line ij of figure 2 may be written as

d 2u.. du.. u1.
I 1 1du ui (1- 2v) 2 2 1+- : - + - -+ 9 u '" + -(u: ] + ui.1)

dr2  r dr 2 2 (1-v ) 2 2 1 2 h 2 j
dr r rh 0  h rh

1 f fiJ (r)
+ 1, (u +u. . -) + = 0 (13)

h1, -1 2(1 - v)
z

where

(4 v - 3) ld1 v' w'2 +1
( v-3) +- + - (14)

r 2 v r dr ij.. dr ij
r 1ij1

and

v' dv

dO



9

Sdw
dz

Similar differential equations are obtained along the other radial lines.

Since each equation has the terms of the displacements on the surrounding

lines, these equations constitute a system of ordinary differential equations

for the displacements ul, u 2 , . ., uf.

Noting that a second-order differential equation can satisfy only a total

of two boundary conditions, the shear stress boundary data must again be

incorporated into the surface line differential equations. For the first radial

line of figure 2, the use of zero shear stress boundary conditions in the

radial direction on the . r, z and r, 6 coordinate planes gives, respectively,

the following imaginary radial line displacements:

dvu0e = u2 + 2h r - 2hEv Iu1 6 e u 2  6 dr11
dr 1

(15)

uln = UN+ +2h w16n ' uNE+1 z dZdr11

Equations (15) must then be used in the application of central difference

approximations when the ordinary differential equation for the first radial

line is generated. Additional details on the construction of these equations

can be found in reference 9.

As before the system of f second order equations given by equation (13)

can be written as a single first order matrix equation

dU
dU = A (r)U +R(r) (16)
dr r
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where in this case the elements of U are defined by

U1 = rul U2 =:ru2 , .. . . .. .,, = ru
(17)

U .1 d(rul) 1 d(ru2) U 1 d(ru,)
U1 ,f+ 2  2f

r dr r dr r dr

and the elements of the coefficient matrix Ar(r) are no longer constant,

but are functions of r. The corresponding equations for V and W are

the same as (9) and (10) with y replaced by 0, the coefficient matrices

being constant.

SOLUTION OF THE SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

The. systems of ordinary differential equations (8) to (10) and (16) can be

solved by any of a number of standard techniques. The method used herein

was basically the matrizant or Peano-Baker method of integration (ref. 14).

For equation (8) the solution can be written as

A x Ax x -AI)
U(x) = e U(0) + e x e-1 R(?7)d?7 (18)0

with similar solutions for equations (9) and (10). U(0) is the initial value

vector, determined from the boundary conditions. The conversion of given

boundary data into required initial values is discussed in more detail in

reference 9.

The matrizant eA1x is generally evaluated by its matrix series. For

larger values of x, when convergence beconqs slow, additive formulas

may be'used. In addition similarity transformations can be used to diago-

nalize the matrix AI. These various techniques for improving the accuracy

are discussed in detail in reference 9.



For the case of equation (16) the solution is more complicated, since

we no longer have constant coefficients. The solution may be expressed

as follows (ref. 14):

U(r) = Q(Ar)U(ro ) + (A r ) (Ar  R7 )d (19)

r

where . r is the initial value of r which may or may not be zero. The

matrizant 2(A ) is given by the infinite matrix integral series
r

r r 772
62(Ar) = I + Ar ?7l)d?7l + A'( 2 )d2 Ar (71)d?1

r rr 7
r r r

0o I rO-0 fO

r  73 772
+ Ar (773 )d?7 3  Ar (72)d72 Ar (?1)d? 1 + ... (20)

r r r
0 ro ro

which of course becomes very difficult to evaluate, However, by substi-

tuting the matrix A into equation (20), it can be seen by inspection, (ref.
r

9), that 0(Ar) can be partitioned into four submatrices which satisfy the

following equations:
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1 dQ11 -'21
r dr

dOd 21
r -= 211Kr

dr 11 r
(21)

d 621 12=-. 
22

r dr

dnd22
r - = 12Kr

dr
dr 12 r

with

011 22l r=r r=r 0

l1 = 2 1 =121 r=ro " r=ro_-

and K is the sub matrix of A obtained from the identity::
r r

0 rl
Ar = .

r r

Instead of evaluating the matrizant O(Ar) by means of equation (20),

it can be evaluated by solving equations (21), This was done for the examples

presented herein, using the single step Runge-Kutta integration method for

solving equations (21).

Since equations (8) to (10) and their boundary conditions are highly

coupled, it is generally impossible to directly evaluate their solutions.

Thus, a successive approximation procedure must be employed where as-
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sumed values must be used initially for the required unknowns. The cyclic

resubstitution of the obtained solutions into the coupling vectors and the

boundary conditions will usually converge to the correct solution, depending

mainly on the accuracy to which the required matrizant can be evaluated.

Once the displacement field in the body has been calculated and the

successive approximation procedure has converged, the normal stress

distributions can be obtained directly by using the stress-displacement

equations. The shear stresses, however, can be evaluated only through

finite difference approximations for the required displacement gradients.

NUMERICAL RESULTS

Solid Cylindrical Bar with Penny-Shaped Crack

Figure 3 shows a cylindrical bar containing a penny-shaped crack and

loaded by a uniform normal stress distribution. For problems with axisym-

metric geometry, the circumferential displacement is inherently zero at

every point and all the remaining variables are independent of the circum-

ferential coordinate 6. The two sets of parallel lines needed for the solu-

tion of this problem are also shown in this figure. Note that the crack edge

is assumed to be midway between adjacent nodes, specifying normal stress

and displacement boundary conditions, respectively.

The solution of this problem was obtained by using two different sets

of lines along the coordinate axes so that the convergence of the finite differ-

ence approximations could be checked. Selected results are shown in figures
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4-6. Figure 4 shows that a relatively course grid of nine axial lines and .

nine radial lines gave almost identical results to those obtained using a

16 by 13 grid. Figures 5 and 6 compare the results obtained herein with

analytical results of references 15 and 16 for infinite bodies and infinitely

long finite radius cylinders with cracks. Both figures show that as the

dimensions of the cylinder increase relative to the crack radius, the results

from the method of lines approach the analytical results, as expected,

Table I shows the axial stress distribution for one case. The accuracy

of the normal stress boundary conditiont -can be n6ted'frorh the listed results.

Annular Plate with Internal Surface Cracks

A much more difficult problem of a thick annular plate with four sym-

metrically situated internal surface cracks and loaded by a uniform radial

tensile load, is shown in figures 7 and 8. Because of symmetry only one,-

sixteenth of the orginal plate has to be discretized. Only a relatively

coarse grid of 4 by 4 by 4 lines was used. Some of the results are shown

in Tables 2 to 5.

Because of the use of a coarse grid, the numerical results for this

example are somewhat inaccurate in magnitude but they do indicate some

previously unknown variations in the stress field for this problem. This

conclusion is possible in that the line method does not usually require a fine

grid for good results as was shown in the previous section. These results

also demonstrate that the method of lines permits the computation of the

displacement and stress fields for a general three-dimensional problem.
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APPLICATION TO TENSILE FRACTURE SPECIMENS CONTAINING CRACKS

A great amount of experimental work has been done in fracture mechan-

ics (ref. 17) through the use of crack-notched specimens. In the past,

many different types of specimens have been used to determine a material's

fracture toughness. The most common early specimens employed in these

tests were the center-cracked and double-edge-notched bar specimens.

Figures 9(a) and 10(a) show the finite rectangular bars with through-thick-

ness, traction-free central and double-edge cracks, respectively. Be-

cause of the symmetric geometry and loading, only one-eighth of the bars

has to be discretized as shown in figures 9(b) and 10(b).

NUMERICAL RESULTS

Center-Cracked Tensile Fracture Specimen

The solution of this problem was obtained by using two different sets

of lines along the coordinate axes so that the convergence of the finite dif:-

ference approximations could be checked. In a given direction, uniform

line spacing was used in all computations with no other restriction being

placed on the selection of the grid size. The crack edge location with re-

spect to the imposed grid was assumed to be halfway between nodes spec-

ifying normal stress and displacement boundary conditions, respectively.

The successive approximation procedure required for decoupling the three

sets of ordinary differential equations was terminated when the difference

between successively calculated displacements at every point was less than

-6a preset value (106).
a preset value (10 ).
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Selected results of the dimensionless displacements are listed in tables 6

to 8. The dimensionless crack opening displacement: i shown iri figure 11.

Inspection of figures 11(a) and (b) shows that the grids of lines have been

sufficiently refined when the results of the 64 by 112 by 112 grid were calcu-

lated. Figure 11(a) also contains the results of the plane elasticity solutions

obtained by Mendelson, Gross, and Srawley (ref. 18). It is noteworthy that

the results correspond to elliptical crack profiles in all cases. As can be

noted from figure 11(c), the finite length of the bar has a very noticeable

effect on the crack opening displacements for values of L<3a. Figure 11(d)

shows the variation of the crack opening displacements across the thickness

of the bar.

The dimensionless normal stress distributions in the crack plane are

shown in figures 12 to 14 as a function of:boththe x- and z-coordinates, .

The results in these figures clearly indicate the singular nature of the nor-

mal stresses near the crack edge. As expected, the stress normal to the

crack plane increases most rapidly near the crack front. A plot of these

stresses in the z-direction also indicates a central region of uniform stress

and a boundary layer through which the stresses decrease to the surface

values. These same results show that as x increases the stress field ap-

proaches a uniaxial state of stress which indicates that the cause of a tri-

axial stress field in the bar is the through-thickness central crack.
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Double-Edge Crack Tensile Fracture Specimen

The crack opening displacements for the problem of figure 10(a) are

presented in figure 15. Comparing figures 15(a) and (b) shows that the finite

difference approximations have sufficiently converged when the results of

the finer grid were calculated. Contrary to the central crack problem, the

crack opening displacements in figure 15 are independent of the z-coordinate.

Similar results were obtained by Cruse and Van Buren (ref. 7) for the single-

edge-crack bar specimen.

STRESS INTENSITY FACTOR

It is customary in fracture mechanics to describe the plane elasticity

crack opening displacement as a superposition of three basic deformation

modes (ref. 1). Since the problems shown in figures 9(a) and 10(a) have geo-

metric symmetry and are symmetrically loaded, only the opening mode of

crack displacement is obtained. In terms of the stress intensity factor for

the opening mode KI, the plane elasticity crack displacements near the

crack tip are given by (ref. 1)

2 (1 J ) RV] y=02(1- I K plane strain (22)
G

2 RS  2 K R plane stress (23)
y=0 (1 + )G 2

where R here is the distance from the crack edge. Since three-dimension-

al problems are neither in a state of plane strain nor in a state of plane

stress, the definition of a stress intensity factor for these problems must
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be first established. Note that by definition the plane stress and plane

strain stress intensity factors are equal while the displacements are approx-

imately 12. 5 percent different for v = 1/3. Since the results indicate that

for a sufficiently long bar most of the bar-in-the:thickness direction is ap-

proximately in a state of plane strain, equation (22) is selected to calculate

the stress intensity factor. Rearranging this equation so that the dimen-

sionless crack opening displacements can be used leads to

Ev
caa

a

EC CKI = y=0 (24)

where

2
_ 4(1 - v )

CI

E Ara

A plot of equation 24) as \R/a-- 0 can then be used to calculate KI'

Since the crack opening displacement is a function of the thickness variable,

the previously defined stress intensity factor varies in the z-direction.

It should be noted that this description of K is completely arbitrairy and

that it is questionable if it has any real significance in three-dimensional

elasticity problems. However, the values of Ki. are presented here so

that a comparison is possible with published plane strain solutions (ref. 1).
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Figure 16 shows the variation across the thickness of the stress in-

tensity factor for the center-cracked bar. Note that K is a maximum.

at the surface and a minimum near the center. The value of K for the

double-edge-crack specimen is independent of the z coordinate since the

crack opening displacement is constant across the thickness.

Although the stress intensity factors for these problems could be de-

termined with reasonable accuracy, the associated type of singularities

are difficult to evaluate because values of the normal stresses are needed

within a distance of 0.05a or less from the crack edge. With the equal

spacing of lines used in these examples, the minimum node location for these

problems is about 0. 06a. For this range of crack edge distance R, the

singularity of the stresses is not defined.

CONCLUSIONS

The line method of analysis presented affords a practical straight for-

ward way for analysis of three-dimensional crack problems, at least for

bodies with reasonably regular boundaries. Because parts of the solution

are obtained as continuous funrctions along the lines chosen, relatively good

accuracy can be obtained with coarse grids, In addition it should be noted

that the introduction of plasticity into the analysis could be accomplished

by merely changing the coupling terms appearing in equations (14) to (16).

Since these have to be determined by an iterative process in any case, it

would seem possible to solve the elastoplastic problem by a simple exten-
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sion of the present method. Whether this approach is practical requires

further investigation.
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TABLE 1. - NONDIMENSIONALIZED AXIAL STRESS z/ o  FOR

SOLID CYLINDRICAL BAR WITH PENNY-SHAPED CRACK

UNDER UNIFORM NORMAL TENSION

[La = 1.0, b = 1.77, L = 1.68 (16 axial and 13 radial lines)]

z r

0.000 0.235 0.471 0.706 0.941 1.060 1.294 1.530 1.770

0.00 0.000 0.000 0.000 0.000 0.000 3.320 1.512 1.206 0.989

.28 .095 .093 .146 .319 .874 1.513 1.365 1.201 1.082

.56 .277 .295 .386 .592 .950 1.150 1.230 1.186 1.172

.84 .515 .542 .624 .770 .957 1.041 1.122 1.136 1.159

1.12 .736 .759 .808 .885 .972 1.010 1.059 1.082 1.092

1.40 .900 .915 .933 .960 .990 1.003 1.022 1.036 1.037

1.68 .999 .998 .999 .999 1.000 .999 .995 .993 .990



TABLE 2. - DIMENSIONLESS CIRCUMFERENTIAL

DISPLACEMENTS Ev/%ob FOR ANNULAR PLATE

WITH INTERNAL SURFACE CRACKS UNDER

UNIFORM RADIAL TENSION ON

OUTSIDE SURFACE

z 0, deg

0 15 30 45

r = 0.25

0.00 0.718 0.566 0.302 0.000

.10 .592 .450 .238

.20 .000 .073 .063

.30 .000 .009 .012

r = 0.50

0.00 0.425 0.285 0.138 0.000

.10 .350 .232 .115

.20 .000 .075 .057

.30 .000 .023 .026

r = 0.75

0.00 0.000 0.037 0.029 0,000

.10 .033 .026
.20 .023 .020

.30 .014 .014 V

r = 1.00

0.00 0.000 0.006 0.004 0.000

.10 .007 .005

.20 .009 .007

.30 .010 .007



TABLE 3. - DIMENSIONLESS RADIAL STRESS

DISTRIBUTION ar / o FOR ANNULAR

PLATE WITH INTERNAL SURFACE

CRACKS UNDER UNIFORM

RADIAL TENSION ON

OUTSIDE SURFACE

9, r
degdeg 0.25 0.50 0.75 1.00

z= 0.00

0 0.000 0.020 1.062 1.000

15 .346 .837

30 .293 .748

45 .282 .726

z = 0.10

0 0.000 0.027 1.048 1.000

15 .405 .872

30 .424 .801

45 .424 .783

z = 0.20

0 0.000 1.305 1.026 1.000

15 .968 .980

30 .840 .932

45 .801 .915 1

z =0.30

0 0.000 0.872 1.005 1.000

15 I .950 1.004

30 .966 .986

45 .956 .975



TABLE 4. - DIMENSIONLESS CIRCUMFERENTIAL

STRESS a / o FOR ANNULAR PLATE WITH

INTERNAL SURFACE CRACKS UNDER

UNIFORM RADIAL TENSION ON

OUTSIDE SURFACE

e, r

deg 0.25 0.50 0.75 1.00

z = 0.00

0 0.000 0.000 1.702 1.251

15 .308 .803 1.542 1.339

30 .209 1.043 1.460 1.416

45 .240 1.145 1.441 1.443

z = 0.10

0 0.000 0.000 1.659 1.246

15 .703 .957 1.534 1.331

30 .803 1.196 1.472 1.410

45 .863 1.270 1.456 1.439

z = 0.20

0 4.569 2.821 1.506 1.236

15 3.609 2.011 1.526 1.313

.30 2.971 1.706 1.506 1.400

45 2.748 1.629 1.498 1.432

z = 0.30

0 3.050 1.858 1.442 1.220

15 3.110 1.879 1.500 1.301

30 3.171 1.825 1.523 1.397

45 3. 167 1.775 1.524 1.432



TABLE 5. - DIMENSIONLESS AXIAL STRESS az/c o

FOR ANNULAR PLATE WITH INTERNAL SURFACE

CRACKS UNDER UNIFORM RADIAL TENSION

ON OUTSIDE SURFACE

, r

deg 0.25 0.50 0.75 1.00

z = 0.00

0 -1.974 -1.049 0.030 -0.014

15 -. 939 -. 126 .043 .040

30 -. 631 .041 .064 .060

45 -. 544 .082 .070 .062

z =0.10

0 -1.597 -1.073 0.028 -0.010

15 -. 867 -. 210 .032 .031

30 -. 579 .006 .053 .046

45 -. 487 .055 .059 .048

z = 0.20

0 0.500 0.313 0.002 -0.004

15 -3.135 -1.996 -1.504 -1.310

30 -. 077 .070 .039 .019

45 -. 097 .073 .042 .020

z = 0.30

0 0.000 0.000 0.000 0000

15

30
45



TABLE 6. - DIMENSIONLESS x-DIRECTIONAL DISPLACE-

MENTS Eu/u a FOR RECTANGULAR BAR UNDER
0

UNIFORM TENSION CONTAINING THROUGH-

THICKNESS CENTRAL CRACK

[a = 1.0;b = 2.0; L = 1.75;t = 1.5 (64 by 112 by 112 x-, y-,

z-directional lines, respectively).

y x z

0.00 0.31 0.77 1.23 1.69 2.00

x-Directional displacements, Eu/u a
0

0.00 0.00 -0.478 -1.047 -1.320 -1.391 -1.437 0.00
.50 -. 123 -. 307 -. 678 -. 999 -1.103

1.00 -.002 -.059 -.245 -.463 -.572
1.75 - .220 .447 .489 .404 .. 324

0.00 0.00 -0.494 -1.084 -1.305 -1.331 -1.383 1.07
.50 -.111 -.282 -.636 -.949 -1.061

1.00 .011 -.034 -.213 -.431 -.546
1.75 .241 .489 .534 .438 .350

0.00 0.00 -0.410 -0.914 -1.196 -1.324 -1.340 1.50
.50 -.043 -.153 -.556 -.934 -1.061

1.00 .036 .013 -.183 -.424 -.546
1.75 .238 .483 .525 .428 .338



TABLE 7.- DIMENSIONLESS y-DIRECTIONAL DISPLACEMENTS

Ev/or a FOR RECTANGULAR BAR UNDER UNIFORM

TENSION CONTAINING THROUGH-THICKNESS

CENTRAL CRACK

[a= 1.0;b=2.0; L= 1.75;t=1.5 (64 by 112 by 112x-, y-,

z-directional lines, respectively)]

z y x

0.00 0.25 0.50 1.00 1.50 1.75

y-Directional displacements, Ev/u a0

0.00 2.742 2.892 2.997 3.227 3.536 3.688 0.00

.43 2.769 2.912 3.018 3.246 3.556 3.708

1.07 2.946 3.070 3.157 3.369 3.678 3.835

1.50 3.258 3.343 3.397 3.569 3.871 4.034

0.00 1.703 1.849 2.055 2.526 2.972 3.173 0.77

.43 1.718 1.863 2.069 2..542 2.988 3.189

1.07 1.812 1.952 2.158 2.631 3.080 3.282

1.50 1.974 2.088 2.283 2.752 3.205 3.410

0.00 0.000 0.328 0.689 1.362 1.924 2.178 1.54

.43 .332 .695 1.371 1.932 2.186

1.07 348 .722 1.409 1.973 2.225

1.50 .343 .722 1.432 2.007 2.257

0.00 0.000 0.137 0.328 0.822 1.328 1.581 2.00

.43 .140 .333 .829 1.334 1.586
1.07 .151 .353 .860 1.362 1.608
1.50 .148 . .874 1.383 1.627



TABLE 8. - DIMENSIONLESS z-DIRECTIONAL DISPLACEMENTS

Ew/u a FOR RECTANGULAR BAR UNDER UNIFORM

TENSION CONTAINING THROUGH-THICKNESS

CENTRAL CRACK

[a= 1.0;b = 2.0; L = 1.75; t= 1.5 (64 by 112 by 112 x-, y-,

z-directional lines, respectively)]

x z y

0.00 0.43 0.64 1.07 1.28 1.50

z-Directional displacements, Ew/ 0 oa

0.00 0.00 0.036 0.068 0.185 0.272 0.366 0.0

.77 -.055 -.081 -.123 -.124 -.095

1.54 -.161 -.249 -.459 -.581 -.704

2.00 -.179 -.270 -.441 -.512 -.568

0.00 0.00 -0.042 -0.059 -0.077 -0.082 -0.090 0.5

.77 -.097 -.147 -.247 -.296 -.342

1.54 -. 162 -. 247 -. 429 -. 522 -. 610

2.00 -.176 -. 264 -. 430 -. 505 -. 574 -

0.00 0.00 -0.123 -0.184 -0.307 -0.370 -0.435 1.0

.77 -.144 -.217 -.366 -.442 -.517

1.54 -.168 -.253 -.423 -.507 -.590

2.00 -. 176 -. 262 -. 425 -. 501 -. 577

0.00 0.00 -0.222 -0.339 -0.595 -0.738 -0.886 1.75

.77 -. 212 -. 320 -. 546 -. 662 -. 780

1.54 -. 191 -. 285 -. 465 -. 549 -. 629
2.00 -. 190 -. 281 -. 446 -. 521 -. 593
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(a) Three sets of lines parallel to x-, y-, and z-coordinates and
perpendicular to corresponding coordinate planes. NxNZ

m = NZxNR
Ne1 n = NRxN8
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Axial lines- -Circumferential

Radial lines-'1- ,j h,
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i+1 jFigure 2. - Sets of lines is direction of cylindrical coordinates.
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(b) Set of interior lines parallel to x-coordinate.

Figure 1. - Sets of lines parallel to Cartesian coordinates.



U I
a 1.0 v = 113

z 2.5 - z b= 1. 77 hr = 0. 1176
2.0 h1.687 L1.= 0.140

h1.0

h07

(a) Dimensionless axial displacement distribution (16 by 13
\4 grid).

S1.687 L= 1.68 0.210

radius =a; v = 13 Y 1.0

0 .4 .8 1.2 1.6 1.8
r

(b) Dimensionless axial displacement distribution (9 by 9 grid).

Figure 4. - Dimensionless axial displacement distribution

i gfor solid cylindrical bar with penny-shaped crack.

Figure 3. - Solid cylindrical bar with penny-shaped crack.
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1.1 6868,

1.0-

Sneddon's solution (b= L=x)

a = 1.0O
.5 v= 113

0 .2 .4 .6 .8 1.0
r

Figure 5. - Dimensionless crack opening displacements for

solid cylindrical bars with penny-shaped cracks of various
lengths and radii.

2. 2

6 By method of lines

- Sneddon and Welch, (ref. 16)

1.8 v= 113, L=-
CDC

1.4

1.0 I I I I
0 .2 .4 .6 .8 1.0

alb

Figure 6. - Dimensionless maximum crack opening as
function of crack to cylinder radius ratio.

roo

d

I

Y y x

L-Four equally
spaced internal

z surface cracks

Figure 7. - Annular plate with internal surface cracks under
uniform external tension.
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2L aL

b 
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112.I CI. a = 1.0

Crct 8 = 2.00

v= 113

Fiure 8. - Part of annular plate with internal surface cracks. z

(b) Discretized region of rectangular bar with through-
thickness central crack.

Figure 9. -(a) Rectangular bar with through-thickness central crack.

ro crack under uniform tension.25

d= 0. 15
t =0. 30

z NZh z

Figure 8.- Part of annular plate with internal surface cracks. • 1'

(b) Discretized region of rectangular bar with through-
thickness central crack.

Figure 9. - Rectangular bar with through -thickness central
crack under uniform tension.
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a= 1.0 f 0o LDouble-edge x .5 - L

b - 2.0 cracks

L - 1.75 y 0

t = 1.5 _ _ (a) Dimensionless crack opening displacement
t - 1 (64x112x112 grid).

v - 113 1z

(a) Rectangular bar with throuah-thickness double edge cracks. 4.0- a - 1.0 v = 1/3

3.b= 2.0 hx = .54
3.5 t=1.5 hx= .292

hx 3.0 - z= 1.5-7 L= 1.75 h z . 375

NX - '2.5-

x 2.0 z 0

NY 1.5 -

y NZ hz 1.0 -

0 .2 .4 .6 .8 1.0
(b) Discretized region of rectangular bar with double-edge cracks. (b) Dimensionless crack opening displacement

(35x70x98 grid).

Figure 10. - Rectangular bar with through-thickness double-edge

cracks under uniform tension. Figure 11. - Dimensionless crack opening displacement
for a rectangular bar under uniform tension con-
taining a through-thickness central crack.
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(c) Variation of crack opening displacement z * 1.5
with bar length. 0

3.0-C, - XI o XSa=l1. 0 v =1/3 oxlo

I b = 2.0 h = .154 (a) Dimensionless x-directional normal stress

4 t15 hx variation along bar width.
2. L= 1. 75 hz 

= .214 , x = 0 2.0 - al.0
x = 1.077 -  b = 2.0

L = 1.75

1.6- t = 1.5
x.- . 614- ., ,.- '

v = 113

1.2 - hx .154
h =. 250
hz =. 214

x - 1. 23 1.8 ,
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x - .922
.4 - x= 1.707

S .4 .8 1.2 1.6 o I I I I I
z 0 .4 .8 1.2 1.8 2.0

(d) Dimensionless crack opening displace- z
ment variation across bar thickness. (b) Dimensionless x-directional normal stress

Figure 11. -Concluded. variation across bar thickness.

Figure 12. - Dimensionless x-directional normal
stress distribution in the crack plane for a
rectangular bar under uniform tension con-
taining a through-thickness central crack.
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(a) Dimensionless y-directional normal stress
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(b) Dimensionless y-directional normal stress

variation across bar thickness.

Figure 13. - Dimensionless y-directional normal
stress distribution in the crack plane for a
rectangular bar under uniform tension con-
taining a through-thickness central crack.
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(a) Dimensionless z-directional normal stress
variation across bar width.
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(b) Dimensionless z-directional normal stress
variation across bar thickness.

Figure 14. - Dimensionless z-directional normal
stress distribution in the crack plane for a
rectangular bar under uniform tension con-
taining a through-thickness central crack.
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For all values of z
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(a) Dimensionless crack opening displacement L = 1.75
,, (64xl12x112 grid). t = 1.5
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= .154 2.5 1
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Figure 16. -Variation of stress intensity factor
3.0 - K across thickness for rectangular bar

For all values of z under uniform tension containing through-
thickness central crack.
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1. 0

1.0 1.2 1.4 1.6 1.8 2.0
z x

,t. (b) Dimensionless crack opening displacement
1- (35x7Ox98 grid).

Figure 15. - Dimensionless crack opening
displacement for a rectangular bar under
uniform tension containing through-
thickness double edge cracks.


